Pyroglutamylated RF-amide peptide (QRFP) gene is regulated by metabolic endotoxemia

焦谷氨酰化 RF-酰胺肽 (QRFP) 基因受代谢性内毒血症调控

阅读:8
作者:Christian Jossart, Mukandila Mulumba, Riccarda Granata, Davide Gallo, Ezio Ghigo, Sylvie Marleau, Marc J Servant, Huy Ong

Abstract

Pyroglutamylated RF-amide peptide (QRFP) is involved in the regulation of food intake, thermogenesis, adipogenesis, and lipolysis. The expression of QRFP in adipose tissue is reduced in diet-induced obesity, a mouse model in which plasma concentrations of endotoxins are slightly elevated. The present study investigated the role of metabolic endotoxemia (ME) on QRFP gene regulation. Our results uncovered the expression of QRFP in murine macrophages and cell lines. This expression has been found to be decreased in mice with ME. Low doses of lipopolysaccharide (LPS) transiently down-regulated QRFP by 59% in RAW264.7 macrophages but not in 3T3-L1 adipocytes. The effect of LPS on QRFP expression in macrophages was dependent on the inhibitor of kB kinase and TIR-domain-containing adapter-inducing interferon (IFN)-β (TRIF) but not myeloid differentiation primary response gene 88. IFN-β was induced by ME in macrophages. IFN-β sustainably reduced QRFP expression in macrophages (64%) and adipocytes (49%). IFN-γ down-regulated QRFP (74%) in macrophages only. Both IFNs inhibited QRFP secretion from macrophages. LPS-stimulated macrophage-conditioned medium reduced QRFP expression in adipocytes, an effect blocked by IFN-β neutralizing antibody. The effect of IFN-β on QRFP expression was dependent on phosphoinositide 3-kinase, p38 MAPK, and histone deacetylases. The effect of IFN-γ was dependent on MAPK/ERK kinase 1/2 and histone deacetylases. Macrophage-conditioned medium containing increased amounts of QRFP preserved adipogenesis in adipocytes. In conclusion, LPS induces IFN-β release from macrophages, which reduces QRFP expression in both macrophages and adipocytes in an autocrine/paracrine-dependent manner, suggesting QRFP as a potential biomarker in ME.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。