Combined ROS Sensitive PEG-PPS-PEG with Peptide Agonist for Effective Target Therapy in Mouse Model

ROS 敏感的 PEG-PPS-PEG 与肽激动剂联合用于小鼠模型的有效靶向治疗

阅读:12
作者:Pingping Xiang #, Qi Liu #, Wangwei Jing, Yaping Wang, Hong Yu

Background and purpose

Growth hormone-releasing hormone (GHRH) agonist, a 29-amino acid peptide, shows significant potential in treating myocardial infarction (MI) by aiding the repair of injured heart tissue. The challenge lies in the effective on-site delivery of GHRH agonist. This study explores the use of a targetable delivery system employing ROS-responsive PEG-PPS-PEG polymers to encapsulate and deliver GHRH agonist MR409 for enhanced therapeutic efficacy.

Conclusion

ROS-responsive PEG-PPS-PEG polymers provide a novel and effective platform for the targeted delivery of GHRH agonist peptides, improving cardiac function and offering a new approach for peptide therapy in MI treatment.

Methods

We synthesized a self-assembling poly (ethylene glycol)-poly (propylene sulfide)-poly (ethylene glycol) polymer (PEG-PPS-PEG) amphiphilic polymer responsive to reactive oxygen species (ROS). The hydrophilic peptide GHRH agonist MR409 was encapsulated within these polymers to form nano PEG-PPS-PEG@MR409 vesicles (NPs). Cardiomyocyte apoptosis was induced under hypoxia and serum-free culture condition for 24 hours, and their production of ROS was detected by fluorescence dye staining. The cellular uptake of PEG-PPS-PEG@MR409 NPs was observed using fluorescence-labeled MR409. Targeting ability and therapeutic efficacy were evaluated using a mouse MI model.

Purpose

Growth hormone-releasing hormone (GHRH) agonist, a 29-amino acid peptide, shows significant potential in treating myocardial infarction (MI) by aiding the repair of injured heart tissue. The challenge lies in the effective on-site delivery of GHRH agonist. This study explores the use of a targetable delivery system employing ROS-responsive PEG-PPS-PEG polymers to encapsulate and deliver GHRH agonist MR409 for enhanced therapeutic efficacy.

Results

PEG-PPS-PEG@MR409 NPs were efficiently internalized by cardiomyocytes, reducing ROS levels and apoptosis. These NPs exhibited superior targeting to the infarcted heart compared to naked MR409 peptide. With a reduced injection frequency (once every three days), PEG-PPS-PEG@MR409 NPs significantly promoted cardiac function recovery post-MI, matching the efficacy of daily MR409 injections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。