CTAB-crafted ZnO nanostructures for environmental remediation and pathogen control

CTAB 制备的 ZnO 纳米结构可用于环境修复和病原体控制

阅读:9
作者:Jyoti Gaur, Sanjeev Kumar, Mhamed Zineddine, Harpreet Kaur, Mohinder Pal, Kanchan Bala, Vanish Kumar, Gurmeet Singh Lotey, Mustapha Musa, Omar El Outassi

Abstract

This study addresses the critical need for efficient and sustainable methods to tackle organic pollutants and microbial contamination in water. The present work aim was to investigate the potential of multi-structured zinc oxide nanoparticles (ZnO NPs) for the combined photocatalytic degradation of organic pollutants and antimicrobial activity. A unique fusion of precipitation-cum-hydrothermal approaches was precisely employed to synthesize the ZnO NPs, resulting in remarkable outcomes. The synthesized CTAB/ZnO NPs demonstrated exceptional properties: they were multi-structured and crystalline with a size of 40 nm and possessed a narrow band gap energy of 2.82 eV, enhancing light absorption for photocatalysis. These nanoparticles achieved an impressive degradation efficiency of 91.75% for Reactive Blue-81 dye within 105 min under UV irradiation. Furthermore, their photocatalytic performance metrics were outstanding, including a quantum yield of 1.73 × 10-4 Φ, a kinetic reaction rate of 3.89 × 102 µmol g-1 h-1, a space-time yield of 8.64 × 10-6 molecules photon-1 mg-1, and a figure-of-merit of 1.03 × 10-9 mol L J-1 g-1 h-1. Notably, the energy consumption was low at 1.73 × 10-4 J mol-1, compared to other systems. Additionally, the ZnO NPs exhibited effective antimicrobial activity against S. aureus and P. aeruginosa. This research underscores the potential of tailored ZnO NPs as a versatile solution for addressing both organic pollution and microbial contamination in water treatment processes. The low energy consumption further enhances its attractiveness as a sustainable solution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。