ZEB2 Represses the Epithelial Phenotype and Facilitates Metastasis in Ewing Sarcoma

ZEB2 抑制尤文氏肉瘤的上皮表型并促进其转移

阅读:8
作者:Elizabeth T Wiles, Russell Bell, Dafydd Thomas, Mary Beckerle, Stephen L Lessnick

Abstract

The vast majority of cancer-related deaths are attributable to metastasis. Effective treatment of metastatic disease will be improved by a better understanding of the molecular mechanisms contributing to this phenomenon. Much of the work in this field has focused on metastasis of carcinomas, tumors of epithelial origin, while metastasis of sarcomas, tumors of mesenchymal origin, remains poorly understood. Experimental evidence from studies in carcinomas, coupled with clinical observations, highlights the importance of both epithelial and mesenchymal characteristics in these cancer cells that make them competent for metastasis. We set out to test if similar cellular plasticity contributes to sarcoma metastasis. We found that the transcription factor, ZEB2, repressed epithelial gene expression in Ewing sarcoma cells, and this, in turn, repressed the epithelial phenotype. When ZEB2 was experimentally reduced in these cells, epithelial characteristics including decreased migratory ability and cytoskeleton rearrangements were observed. Furthermore, ZEB2 reduction in Ewing sarcoma cells resulted in a decreased metastatic potential using a mouse metastasis model. Our data show that Ewing sarcoma cells may have more epithelial plasticity than previously appreciated. This coupled with previous data demonstrating Ewing sarcoma cells also have mesenchymal features primes these cells to successfully metastasize. This is clinically relevant for 2 important reasons. First, this may offer a therapeutic opportunity to induce characteristics of one cell type or the other depending on the stage of the disease. Second, and more broadly, this raises questions about the cell of origin in Ewing sarcoma and may inform future animal models of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。