Divergent Responses of Hydrophilic CdSe and CdSe@CdS Core-Shell Nanocrystals in Apoptosis and In Vitro Cancer Cell Imaging: A Comparative Analysis

亲水性 CdSe 和 CdSe@CdS 核壳纳米晶体在细胞凋亡和体外癌细胞成像中的不同反应:比较分析

阅读:9
作者:Kishan Das, Neelima Bhatt, Ajith Manayil Parambil, Kajal Kumari, Raj Kumar, Kamla Rawat, Paulraj Rajamani, Himadri B Bohidar, Ahmed Nadeem, Saravanan Muthupandian, Ramovatar Meena

Abstract

With their distinctive core-shell design, core-shell nanocrystals have drawn interest in catalysis, medicinal research, and nanotechnology. These nanocrystals have a variety of characteristics and possible uses. The application of core-shell nanocrystals offers significant potential in increasing diagnostic and therapeutic approaches for cancer research in apoptosis and in vitro cancer cell imaging. In the present study, we investigated the fluorescence behavior of hydrophilic CdSe (core-only) and CdSe@CdS (core-shell) nanocrystals (NCs) and their potential in cancer cell imaging. The addition of a CdS coating to CdSe NCs increased the fluorescence intensity tenfold. The successful fabrication of core-shell CdSe@CdS nanocrystals was proven by a larger particle size (evaluated via DLS and TEM) and their XRD pattern and surface morphology compared to CdSe (core-only) NCs. When these NCs were used for bioimaging in MCF-7 and HEK-293 cell lines, they demonstrated excellent cellular uptake due to higher fluorescence intensity within cancerous cells than normal cells. Comparative cytotoxicity studies revealed that CdSe NCs were more toxic to all three cell lines (HEK-293, MCF-7, and HeLa) than CdSe@CdS core-shell structures. Furthermore, a decrease in mitochondrial membrane potential and intracellular ROS production supported NCs inducing oxidative stress, which led to apoptosis via the mitochondria-mediated pathway. Increased cytochrome c levels, regulation of pro-apoptotic gene expression (e.g., p53, Bax), and down-regulation of Bcl-2 all suggested cellular apoptosis occurred via the intrinsic pathway. Significantly, at an equivalent dose of core-shell NCs, core-only NCs induced more oxidative stress, resulting in increased apoptosis. These findings shed light on the role of a CdS surface coating in reducing free radical release, decreasing cytotoxicity, and improving fluorescence, advancing the field of cell imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。