β-Cyclodextrin-optimized supramolecular nanovesicles enhance the droplet/foliage interface interactions and inhibition of succinate dehydrogenase (SDH) for efficient treatment of fungal diseases

β-环糊精优化的超分子纳米囊泡增强了液滴/叶子界面相互作用并抑制了琥珀酸脱氢酶 (SDH),从而有效治疗真菌疾病

阅读:7
作者:Deng-Xuan Guo #, Li Song #, Jing-Han Yang, Xin-Yu He, Pan Liu, Pei-Yi Wang

Background

Plant fungal diseases present a major challenge to global agricultural production. Despite extensive efforts to develop fungicides, particularly succinate dehydrogenase inhibitors (SDHIs), their effectiveness is often limited by poor retention of fungicide droplets on hydrophobic leaves. The off-target losses and unintended release cause fungal resistance and severe environmental pollution.

Conclusion

This innovative approach addresses key challenges related to fungicide deposition and resistance, improving the bioavailability of agricultural chemicals. The findings highlight AoH25@β-CD as a novel supramolecular SDH inhibitor, demonstrating its potential as an efficient and sustainable solution for plant disease management.

Results

To update the structure of existing SDHIs and synchronously realize the efficient utilization, we have employed a sophisticated supramolecular strategy to optimize a structurally novel SDH inhibitor (AoH25), creating an innovative supramolecular SDH fungicide (AoH25@β-CD), driven by the host-guest recognition principle between AoH25 and β-cyclodextrin (β-CD). Intriguingly, AoH25@β-CD self-assembles into biocompatible supramolecular nanovesicles, which reinforce the droplet/foliage (liquid-solid) interface interaction and the effective wetting and retention on leaf surfaces, setting the foundation for enhancing fungicide utilization. Mechanistic studies revealed that AoH25@β-CD exhibited significantly higher inhibition of SDH (IC50 = 1.56 µM) compared to fluopyram (IC50 = 244.41 µM) and AoH25 alone (IC50 = 2.29 µM). Additionally, AoH25@β-CD increased the permeability of cell membranes in Botryosphaeria dothidea, facilitating better penetration of active ingredients into pathogenic cells. Further experimental outcomes confirmed that AoH25@β-CD was 88.5% effective against kiwifruit soft rot at a low-dose of 100 µg mL-1, outperforming commercial fungicides such as fluopyram (52.4%) and azoxystrobin (65.4%). Moreover, AoH25@β-CD showed broad-spectrum bioactivity against oilseed rape sclerotinia, achieving an efficacy of 87.2%, outstripping those of fluopyram (48.7%) and azoxystrobin (76.7%).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。