Functional and anatomic consequences of subretinal dosing in the cynomolgus macaque

视网膜下注射对猕猴的功能和解剖学影响

阅读:6
作者:T Michael Nork, Christopher J Murphy, Charlene B Y Kim, James N Ver Hoeve, Carol A Rasmussen, Paul E Miller, Hugh D Wabers, Michael W Neider, Richard R Dubielzig, Ryan J McCulloh, Brian J Christian

Conclusions

Subretinal injection is a promising route for drug delivery to the eye. Three months post-subretinal injection, retinal function was nearly recovered, although reorganization of the outer segment rod disc remained disrupted. Understanding the functional and anatomic effects of subretinal injection is important for interpretation of the effects of compounds delivered to the subretinal space. Clinical relevance: Subretinal injection is a new potential route for drug delivery to the eye. Separating drug effects from the procedural effects is critical.

Methods

Subretinal injections (100 μL) of balanced salt solution were placed in the superotemporal macula of 1 eye in 3 cynomolgus macaques. Fellow eyes received intravitreal injections (100 μL) of balanced salt solution. Fundus photography, ocular coherence tomography, and multifocal electroretinography were performed before and immediately after injection and again at intervals up to 3 months postinjection. Histopathologic analyses included transmission electron microscopy and immunohistochemistry for glial fibrillary acidic protein, rhodopsin, M/L-cone opsin, and S-cone opsin.

Objective

To characterize functional and anatomic sequelae of a bleb induced by subretinal injection.

Results

Retinas were reattached by 2 days postinjection (seen by ocular coherence tomography). Multifocal electroretinography waveforms were suppressed post-subretinal injection within the subretinal injection bleb and, surprisingly, also in regions far peripheral to this area. Multifocal electroretinography amplitudes were nearly completely recovered by 90 days. The spectral-domain ocular coherence tomography inner segment-outer segment line had decreased reflectivity at 92 days. Glial fibrillary acidic protein and S-cone opsin staining were unaffected. Rhodopsin and M/L-cone opsins were partially displaced into the inner segments. Transmission electron microscopy revealed disorganization of the outer segment rod (but not cone) discs. At all postinjection intervals, eyes with intravitreal injection were similar to baseline. Conclusions: Subretinal injection is a promising route for drug delivery to the eye. Three months post-subretinal injection, retinal function was nearly recovered, although reorganization of the outer segment rod disc remained disrupted. Understanding the functional and anatomic effects of subretinal injection is important for interpretation of the effects of compounds delivered to the subretinal space. Clinical relevance: Subretinal injection is a new potential route for drug delivery to the eye. Separating drug effects from the procedural effects is critical.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。