Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors

已知药物可能被重新用作强效细菌 β-葡萄糖醛酸酶抑制剂

阅读:6
作者:Syed Ahmad, Mark A Hughes, Li-An Yeh, John E Scott

Abstract

The active metabolite of the chemotherapeutic irinotecan, SN-38, is detoxified through glucuronidation and then excreted into the gastrointestinal tract. Intestinal bacteria convert the glucuronidated metabolite back to the toxic SN-38 using β-glucuronidase (GUS), resulting in debilitating diarrhea. Inhibiting GUS activity may relieve this side effect of irinotecan. In this study, we sought to determine whether any known drugs have GUS inhibitory activity. We screened a library of Food and Drug Administration-approved drugs with a cell-free biochemical enzyme assay using purified bacterial GUS. After triage, five drugs were confirmed to inhibit purified bacterial GUS. Three of these were the monoamine oxidase inhibitors nialamide, isocarboxazid, and phenelzine with average IC(50) values for inhibiting GUS of 71, 128, and 2300 nM, respectively. The tricyclic antidepressant amoxapine (IC(50) = 388 nM) and the antimalarial mefloquine (IC(50) = 1.2 µM) also had activity. Nialamide, isocarboxazid, and amoxapine had no significant activity against purified mammalian GUS but showed potent activity for inhibiting endogenous GUS activity in a cell-based assay using living intact Escherichia coli with average IC(50) values of 17, 336, and 119 nM, respectively. Thus, nialamide, isocarboxazid, and amoxapine have potential to be repurposed as therapeutics to reduce diarrhea associated with irinotecan chemotherapy and warrant further investigation for this use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。