Effect of Montelukast on Bronchopulmonary Dysplasia (BPD) and Related Mechanisms

孟鲁司特对支气管肺发育不良(BPD)的影响及相关机制

阅读:3
作者:Xin Chen, Xiaoqian Zhang, Jiahua Pan

Abstract

BACKGROUND Bronchopulmonary dysplasia (BPD) is a chronic lung disease common in preterm infants. Montelukast, an effective cysteinyl leukotriene (cysLT) receptor antagonist, has a variety of pharmacological effects and has protective effects against a variety of diseases. Currently, the efficacy and safety of montelukast sodium in treating BPD has been revealed, however, the precise molecular mechanism of the effect of montelukast on BPD development remain largely unclear. Therefore, this study aimed to investigate the effect and mechanism of montelukast on BPD in vivo and in vitro. MATERIAL AND METHODS A mouse BPD model and hyperoxia-induced lung cell injury model were established and treated with montelukast. Then mean linear intercept (MLI), radial alveolar count (RAC), lung weight/body weight (LW/BW) ratio, pro-inflammatory factors, and oxidative stress-related factors in lung tissues were determined. Cell viability and apoptosis were detected using MTT assay and flow cytometer respectively. RESULTS The results showed that montelukast treatment relieved mouse BPD, evidenced by increased RAC and decreased MLI and LW/BW ratios. We also found that montelukast treatment reduced pro-inflammatory factors (TNF-alpha, IL-6, and IL-1ß) production, enhanced superoxide dismutase (SOD) activity, and reduced malondialdehyde (MDA) content in the lung tissues of BPD mice. Besides, montelukast eliminated the reduced cell viability and enhanced cell apoptosis induced by hyperoxia exposure in vitro. Moreover, the upregulated pro-inflammatory factors production and p-p65 protein level in lung cells caused by hyperoxia were decreased by montelukast treatment. CONCLUSIONS Montelukast protected against mouse BPD induced by hyperoxia through inhibiting inflammation, oxidative stress, and lung cell apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。