Functionalized Cerium Dioxide Nanoparticles with Antioxidative Neuroprotection for Alzheimer's Disease

具有抗氧化神经保护作用的功能化二氧化铈纳米粒子可治疗阿尔茨海默病

阅读:7
作者:Yu Hu, Hui Guo, Shuai Cheng, Junpeng Sun, Jiaqun Du, Xiaobang Liu, Ying Xiong, Liqing Chen, Chang Liu, Chao Wu, He Tian

Background

Oxidative stress induced reactive oxygen species (ROS) and aggregation of amyloid β (Aβ) in the nervous system are significant contributors to Alzheimer's disease (AD). Cerium dioxide and manganese oxide are known as to be effective and recyclable ROS scavengers with high efficiency in neuroprotection.

Conclusion

LMC-RES can effectively across the BBB, reduce oxidative stress, inhibit Aβ aggregation, and promote the recovery of neurological function.

Methods

A hollow-structured manganese-doped cerium dioxide nanoparticle (LMC) was synthesized for loading Resveratrol (LMC-RES). The LMC-RES were characterized by TEM, DLS, Zeta potential, and X-ray energy spectrum analysis. We also tested the biocompatibility of LMC-RES and the ability of LMC-RES to cross the blood-brain barrier (BBB). The antioxidant effects of LMC-RES were detected by SH-SY5Y cells. Small animal live imaging was used to detect the distribution of LMC-RES in the brain tissue of AD mice. The cognitive abilities of mice were tested by water maze and nesting experiments. The effects of LMC-RES in reducing oxidative stress and protecting neurons was also explored by histological analysis.

Results

The results showed that LMC-RES had good sustained release effect and biocompatibility. The drug release rate of LMC-RES at 24 hours was 80.9 ± 2.25%. Meanwhile, LMC-RES could cross the BBB and enrich in neurons to exert antioxidant effects. In Aβ-induced SH-SY5Y cells, LMC-RES could inhibits oxidative stress through the Nrf-2/HO-1 signaling pathway. In AD model mice, LMC-RES was able to reduce ROS levels, inhibit Aβ-induced neurotoxicity, and protect neurons and significantly improve cognitive deficits of AD mice after drug administration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。