Secretory phospholipase A2 type III enhances alpha-secretase-dependent amyloid precursor protein processing through alterations in membrane fluidity

分泌型磷脂酶 A2 III 型通过改变膜流动性增强 α-分泌酶依赖性淀粉样蛋白前体的加工

阅读:7
作者:Xiaoguang Yang, Wenwen Sheng, Yan He, Jiankun Cui, Mark A Haidekker, Grace Y Sun, James C-M Lee

Abstract

In the non-amyloidogenic pathway, amyloid precursor protein (APP) is cleaved by alpha-secretases to produce alpha-secretase-cleaved soluble APP (sAPP(alpha)) with neuroprotective and neurotrophic properties; therefore, enhancing the non-amyloidogenic pathway has been suggested as a potential pharmacological approach for the treatment of Alzheimer's disease. Here, we demonstrate the effects of type III secretory phospholipase A(2) (sPLA(2)-III) on sAPP(alpha) secretion. Exposing differentiated neuronal cells (SH-SY5Y cells and primary rat neurons) to sPLA(2)-III for 24 h increased sAPP(alpha) secretion and decreased levels of Abeta(1-42) in SH-SY5Y cells, and these changes were accompanied by increased membrane fluidity. We further tested whether sPLA(2)-III-enhanced sAPP(alpha) release is due in part to the production of its hydrolyzed products, including arachidonic acid (AA), palmitic acid (PA), and lysophosphatidylcholine (LPC). Addition of AA but neither PA nor LPC mimicked sPLA(2)-III-induced increases in sAPP(alpha) secretion and membrane fluidity. Treatment with sPLA(2)-III and AA increased accumulation of APP at the cell surface but did not alter total expressions of APP, alpha-secretases, and beta-site APP cleaving enzyme. Taken together, these results support the hypothesis that sPLA(2)-III enhances sAPP(alpha) secretion through its action to increase membrane fluidity and recruitment of APP at the cell surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。