Evolution of mirror-image pain in temporomandibular joint osteoarthritis mouse model

颞下颌关节骨关节炎小鼠模型中镜像痛的演变

阅读:8
作者:Nattapon Rotpenpian, Sompol Tapechum, Anchalee Vattarakorn, Wongsathit Chindasri, Chit Care, Narawut Pakaprot, Aree Wanasuntronwong

Conclusions

Clearly, the TMJ model with unilateral osteoarthritis exhibited mirror-image pain. Therefore, this model is useful in investigating the pathogenesis of pain and in developing treatments.

Objective

Mirror-image pain is a kind of pain that occurs on the contralateral side, but its pathogenesis remains unclear. To develop an osteoarthritis mouse model for investigating mirror-image pain through observing nocifensive behaviors, histological changes, and nociceptive activity at days 3, 7, 14, 21, and 28 after the chemical induction of unilateral temporomandibular joint (TMJ) osteoarthritis. Methodology: We randomly divided 6-week-old mice into sham and complete Freund adjuvant groups. To induce nocifensive behaviors, we applied 0.04 g of von Frey filament, 10 psi of air puff, and cold acetone on both sides of whisker pads at different days. The histology of TMJ on both sides was observed by hematoxylin/eosin staining and microcomputed tomography scanning. Furthermore, the nociceptive activity was evaluated using the phosphorylated cyclic AMP response element binding protein (pCREB) and a microglia marker at different days in the trigeminal subnucleus caudalis.

Results

Nocifensive behaviors against mechanical and temperature stimuli on the contralateral side became stronger than the baseline on day 28, in agreement with the elevation of the pCREB and the microglia marker in the trigeminal subnucleus caudalis. Thus, hypernociception on the contralateral side occurred at day 28. Conclusions: Clearly, the TMJ model with unilateral osteoarthritis exhibited mirror-image pain. Therefore, this model is useful in investigating the pathogenesis of pain and in developing treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。