Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery

水凝胶形成微针阵列作为透皮艾氯胺酮输送的治疗选择

阅读:4
作者:Aaron J Courtenay, Emma McAlister, Maelíosa T C McCrudden, Lalit Vora, Lilach Steiner, Galit Levin, Etgar Levy-Nissenbaum, Nava Shterman, Mary-Carmel Kearney, Helen O McCarthy, Ryan F Donnelly

Abstract

Treatment resistant depression is, by definition, difficult to treat using standard therapeutic interventions. Recently, esketamine has been shown as a viable rescue treatment option in patients in depressive crisis states. However, IV administration is associated with a number of drawbacks and advanced delivery platforms could provide an alternative parenteral route of esketamine dosing in patients. Hydrogel-forming microneedle arrays facilitate transdermal delivery of drugs by penetrating the outer layer of the skins surface, absorbing interstitial skin fluid and swelling. This subsequently facilitates permeation of medicines into the dermal microcirculation. This paper outlines the in vitro formulation development for hydrogel-forming microneedle arrays containing esketamine. Analytical methods for the detection and quantitation of esketamine were developed and validated according to International Conference on Harmonisation standards. Hydrogel-forming microneedle arrays were fully characterised for their mechanical strength and skin insertion properties. Furthermore, a series of esketamine containing polymeric films and lyophilised reservoirs were assessed as drug reservoir candidates. Dissolution testing and content drug recovery was carried out, followed by permeation studies using 350 μm thick neonatal porcine skin in modified Franz cell apparatus. Lead reservoir candidates were selected based on measured physicochemical properties and brought forward for testing in female Sprague-Dawley rats. Plasma samples were analysed using reverse phase high performance liquid chromatography for esketamine. Both polymeric film and lyophilised reservoirs candidate patches achieved esketamine plasma concentrations higher than the target concentration of 0.15-0.3 μg/ml over 24 h. Mean plasma concentrations in rats, 24 h post-application of microneedle patches with drug reservoir F3 and LW3, were 0.260 μg/ml and 0.498 μg/ml, respectively. This developmental study highlights the potential success of hydrogel-forming microneedle arrays as a transdermal drug delivery platform for ESK and supports moving to in vivo tests in a larger animal model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。