Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A''-DTPA) conjugates show increased kidney accumulation

肿瘤靶向 HPMA 共聚物-(RGDfK)-(CHX-A''-DTPA) 结合物显示肾脏蓄积增加

阅读:5
作者:Mark P Borgman, Tomika Coleman, Rohit B Kolhatkar, Sandra Geyser-Stoops, Bruce R Line, Hamidreza Ghandehari

Abstract

N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-RGDfK conjugates targeting the alpha(v)beta(3) integrin have shown increased accumulation in solid tumors and promise for selective delivery of radiotherapeutics to sites of angiogenesis- or tumor-expressed alpha(v)beta(3) integrin. An unresolved issue in targeting radiotherapeutics to solid tumors is toxicity to non-target organs. To reduce toxicity of radiolabeled conjugates, we have synthesized HPMA copolymer-RGDfK conjugates with varying molecular weight and charge content to help identify a polymeric structure that maximizes tumor accumulation while rapidly clearing from non-targeted organs. Endothelial cell binding studies showed that copolymer conjugates of approximately 43, 20 and 10 kD actively bind to the alpha(v)beta(3) integrin. Scintigraphic images showed rapid clearance of indium-111 ((111)In) radiolabeled conjugates from the blood pool and high kidney accumulation within 1 h in tumor bearing mice. Biodistribution data confirms images with high accumulation in kidney (max 210% ID/g for 43 kD conjugate) and lower tumor accumulation (max 1.8% ID/g for 43 kD conjugate). While actively binding to the alpha(v)beta(3) integrin in vitro, HPMA copolymer-RGDfK conjugates with increased negative charge through increased CHX-A''-DTPA chelator content in the side chains causes increased kidney accumulation with a loss of tumor accumulation in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。