Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles

微泡促进声孔效应产生的细胞内输送和钙瞬变

阅读:16
作者:Z Fan, R E Kumon, J Park, C X Deng

Abstract

Ultrasound application in the presence of microbubbles is a promising strategy for intracellular drug and gene delivery, but it may also trigger other cellular responses. This study investigates the relationship between the change of cell membrane permeability generated by ultrasound-driven microbubbles and the changes in intracellular calcium concentration ([Ca(2+)](i)). Cultured rat cardiomyoblast (H9c2) cells were exposed to a single ultrasound pulse (1MHz, 10-15cycles, 0.27MPa) in the presence of a Definity(TM) microbubble. Intracellular transport via sonoporation was assessed in real time using propidium iodide (PI), while [Ca(2+)](i) and dye loss from the cells were measured with preloaded fura-2. The ultrasound exposure generated fragmentation or shrinking of the microbubble. Only cells adjacent to the ultrasound-driven microbubble exhibited propidium iodide uptake with simultaneous [Ca(2+)](i) increase and fura-2 dye loss. The amount of PI uptake was correlated with the amount of fura-2 dye loss. Cells with delayed [Ca(2+)](i) transients from the time of ultrasound application had no uptake of PI. These results indicate the formation of non-specific pores in the cell membrane by ultrasound-stimulated microbubbles and the generation of calcium waves in surrounding cells without pores.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。