MiR-106a facilitates the sensorineural hearing loss induced by oxidative stress by targeting connexin-43

MiR-106a 通过靶向连接蛋白-43 促进氧化应激引起的神经性听力损失

阅读:3
作者:Lei Ding, Jiaxi Wang

Abstract

Sensorineural hearing loss (SNHL) is a common clinical side effect resulted from the overusing of aminoglycoside antibacterial drugs, such as gentamicin. Oxidative stress is recently evidenced to be an important inducer for SNHL, which is reported to be associated with the knockdown of connexin-43. MiR-106a is recently found as a regulator of connexin-43. The present study aims to investigate whether miR-106a is a vital mediator in the development of SNHL. Firstly, upregulated miR-106a was observed in the peripheral blood sample of SNHL patients. Glucose oxidase (GO) was utilized to induce oxidative injury in isolated rat cochlear marginal cells (MCs), followed by introducing the miR-106a inhibitor. We found that the declined proliferation ability, increased apoptosis, and activated oxidative stress in GO-stimulated MCs were dramatically abolished by the miR-106a inhibitor, accompanied by the upregulation of connexin-43. The targeting correlation between miR-106a and connexin-43 was predicted and confirmed by the dual luciferase gene reporter assay. Furthermore, the regulatory effect of miR-106a inhibitor against the proliferation, apoptosis, and oxidative stress in GO-treated MCs were dramatically abolished by the knockdown of connexin-43. Gentamicin was utilized to establish the SNHL model in rats, followed by the treatments of antagomir-106a and antagomir-106a combined with carbenoxolone, an inhibitor of connexin-43. The alleviated pathological state, reduced apoptosis, and ameliorated oxidative stress in cochlea tissues were observed in antagomir-106a treated SNHL rats, which were dramatically reversed by the co-administration of carbenoxolone. Collectively, miR-106a facilitated the SNHL induced by oxidative stress via targeting connexin-43.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。