Life without TTP: apparent absence of an important anti-inflammatory protein in birds

没有 TTP 的生活:鸟类明显缺乏一种重要的抗炎蛋白

阅读:7
作者:Wi S Lai, Deborah J Stumpo, Elizabeth A Kennington, Adam B Burkholder, James M Ward, David L Fargo, Perry J Blackshear

Abstract

Both innate and adaptive immunity in birds are different from their mammalian counterparts. Understanding bird immunity is important because of the enormous potential impact of avian infectious diseases, both in their role as food animals and as potential carriers of zoonotic diseases in man. The anti-inflammatory protein tristetraprolin (TTP) is an important component of the mammalian innate immune response, in that it binds to and destabilizes key cytokine mRNAs. TTP knockout mice exhibit a severe systemic inflammatory syndrome, and they are abnormally sensitive to innate immune stimuli such as LPS. TTP orthologs have been found in most vertebrates studied, including frogs. Here, we attempted to identify TTP orthologs in chicken and other birds, using database searches and deep mRNA sequencing. Although sequences encoding the two other widely expressed TTP family members, ZFP36L1 and ZFP36L2, were identified, we did not find sequences corresponding to TTP in any bird species. Sequences corresponding to TTP were identified in both lizards and alligators, close evolutionary relatives of birds. The induction kinetics of Zfp36l1 and Zfp36l2 mRNAs in LPS-stimulated chicken macrophages or serum-stimulated chick embryo fibroblasts did not resemble the normal mammalian TTP response to these stimuli, suggesting that the other two family members might not compensate for the TTP deficiency in regulating rapidly induced mRNA targets. Several mammalian TTP target transcripts have chicken counterparts that contain one or more potential TTP binding sites, raising the possibility that birds express other proteins that subsume TTP's function as a rapidly inducible regulator of AU-rich element (ARE)-dependent mRNA turnover.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。