In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery

用于肺部药物输送的白蛋白载体的体内生物相容性、清除率和生物分布

阅读:5
作者:A Woods, A Patel, D Spina, Y Riffo-Vasquez, A Babin-Morgan, R T M de Rosales, K Sunassee, S Clark, H Collins, K Bruce, L A Dailey, B Forbes

Abstract

The development of clinically acceptable albumin-based nanoparticle formulations for use in pulmonary drug delivery has been hindered by concerns about the toxicity of nanomaterials in the lungs combined with a lack of information on albumin nanoparticle clearance kinetics and biodistribution. In this study, the in vivo biocompatibility of albumin nanoparticles was investigated following a single administration of 2, 20, and 390μg/mouse, showing no inflammatory response (TNF-α and IL-6, cellular infiltration and protein concentration) compared to vehicle controls at the two lower doses, but elevated mononucleocytes and a mild inflammatory effect at the highest dose tested. The biodistribution and clearance of (111)In labelled albumin solution and nanoparticles over 48h following a single pulmonary administration to mice was investigated by single photon emission computed tomography and X-ray computed tomography imaging and terminal biodistribution studies. (111)In labelled albumin nanoparticles were cleared more slowly from the mouse lung than (111)In albumin solution (64.1±8.5% vs 40.6±3.3% at t=48h, respectively), with significantly higher (P<0.001) levels of albumin nanoparticle-associated radioactivity located within the lung tissue (23.3±4.7%) compared to the lung fluid (16.1±4.4%). Low amounts of (111)In activity were detected in the liver, kidneys, and intestine at time points >24h indicating that small amounts of activity were cleared from the lungs both by translocation across the lung mucosal barrier, as well as mucociliary clearance. This study provides important information on the fate of albumin vehicles in the lungs, which may be used to direct future formulation design of inhaled nanomedicines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。