Master Sculptor at Work: Enteropathogenic Escherichia coli Infection Uniquely Modifies Mitochondrial Proteolysis during Its Control of Human Cell Death

雕塑大师在工作:肠致病性大肠杆菌感染在控制人类细胞死亡过程中独特地改变了线粒体蛋白水解

阅读:6
作者:Natalie C Marshall, Maichael Thejoe, Theo Klein, Antonio Serapio-Palacios, Andrew S Santos, Niklas von Krosigk, Jayachandran N Kizhakkedathu, Nikolay Stoynov, Leonard J Foster, Christopher M Overall, B Brett Finlay

Abstract

Enteropathogenic Escherichia coli (EPEC) causes severe diarrheal disease and is present globally. EPEC virulence requires a bacterial type III secretion system to inject >20 effector proteins into human intestinal cells. Three effectors travel to mitochondria and modulate apoptosis; however, the mechanisms by which effectors control apoptosis from within mitochondria are unknown. To identify and quantify global changes in mitochondrial proteolysis during infection, we applied the mitochondrial terminal proteomics technique mitochondrial stable isotope labeling by amino acids in cell culture-terminal amine isotopic labeling of substrates (MS-TAILS). MS-TAILS identified 1,695 amino N-terminal peptides from 1,060 unique proteins and 390 N-terminal peptides from 215 mitochondrial proteins at a false discovery rate of 0.01. Infection modified 230 cellular and 40 mitochondrial proteins, generating 27 cleaved mitochondrial neo-N termini, demonstrating altered proteolytic processing within mitochondria. To distinguish proteolytic events specific to EPEC from those of canonical apoptosis, we compared mitochondrial changes during infection with those reported from chemically induced apoptosis. During infection, fewer than half of all mitochondrial cleavages were previously described for canonical apoptosis, and we identified nine mitochondrial proteolytic sites not previously reported, including several in proteins with an annotated role in apoptosis, although none occurred at canonical Asp-Glu-Val-Asp (DEVD) sites associated with caspase cleavage. The identification and quantification of novel neo-N termini evidences the involvement of noncaspase human or EPEC protease(s) resulting from mitochondrial-targeting effectors that modulate cell death upon infection. All proteomics data are available via ProteomeXchange with identifier PXD016994IMPORTANCE To our knowledge, this is the first study of the mitochondrial proteome or N-terminome during bacterial infection. Identified cleavage sites that had not been previously reported in the mitochondrial N-terminome and that were not generated in canonical apoptosis revealed a pathogen-specific strategy to control human cell apoptosis. These data inform new mechanisms of virulence factors targeting mitochondria and apoptosis during infection and highlight how enteropathogenic Escherichia coli (EPEC) manipulates human cell death pathways during infection, including candidate substrates of an EPEC protease within mitochondria. This understanding informs the development of new antivirulence strategies against the many human pathogens that target mitochondria during infection. Therefore, mitochondrial stable isotope labeling by amino acids in cell culture-terminal amine isotopic labeling of substrates (MS-TAILS) is useful for studying other pathogens targeting human cell compartments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。