The bHLH-PAS transcription factor dysfusion regulates tarsal joint formation in response to Notch activity during drosophila leg development

在果蝇腿部发育过程中,bHLH-PAS 转录因子融合异常通过响应 Notch 活性来调节跗关节的形成

阅读:4
作者:Sergio Córdoba, Carlos Estella

Abstract

A characteristic of all arthropods is the presence of flexible structures called joints that connect all leg segments. Drosophila legs include two types of joints: the proximal or "true" joints that are motile due to the presence of muscle attachment and the distal joints that lack musculature. These joints are not only morphologically, functionally and evolutionarily different, but also the morphogenetic program that forms them is distinct. Development of both proximal and distal joints requires Notch activity; however, it is still unknown how this pathway can control the development of such homologous although distinct structures. Here we show that the bHLH-PAS transcription factor encoded by the gene dysfusion (dys), is expressed and absolutely required for tarsal joint development while it is dispensable for proximal joints. In the presumptive tarsal joints, Dys regulates the expression of the pro-apoptotic genes reaper and head involution defective and the expression of the RhoGTPases modulators, RhoGEf2 and RhoGap71E, thus directing key morphogenetic events required for tarsal joint development. When ectopically expressed, dys is able to induce some aspects of the morphogenetic program necessary for distal joint development such as fold formation and programmed cell death. This novel Dys function depends on its obligated partner Tango to activate the transcription of target genes. We also identified a dedicated dys cis-regulatory module that regulates dys expression in the tarsal presumptive leg joints through direct Su(H) binding. All these data place dys as a key player downstream of Notch, directing distal versus proximal joint morphogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。