Development of a Machine Learning Model for Survival Risk Stratification of Patients With Advanced Oral Cancer

开发用于晚期口腔癌患者生存风险分层的机器学习模型

阅读:4
作者:Yi-Ju Tseng, Hsin-Yao Wang, Ting-Wei Lin, Jang-Jih Lu, Chia-Hsun Hsieh, Chun-Ta Liao0

Objective

To develop and validate a machine learning-based algorithm that can provide survival risk stratification for patients with advanced oral cancer who have comprehensive clinicopathologic and genetic data. Design, setting, and participants: In this prognostic cohort study, the elastic net penalized Cox proportional hazards regression-based risk stratification model was developed and validated using single-center data collected between January 1, 1996, and December 31, 2011. In total, comprehensive clinicopathologic and genetic data (including clinical, pathologic, and 44 cancer-related gene variant profiles) of 334 patients with stage III or IV oral squamous cell carcinoma were used to develop and validate the algorithm in this 15-year cohort study. Data analysis was conducted between February 1, 2018, and May 6, 2020. Main outcomes and measures: The main outcomes were cancer-specific survival, distant metastasis-free survival, and locoregional recurrence-free survival. Model performance was compared in terms of the Akaike information criterion and the Harrell concordance index (C index).

Results

Complete data were available for 334 patients (315 men; median age at onset, 48 years [interquartile range, 42-56 years]). The predictive models using comprehensive clinicopathologic and genetic data outperformed those using clinicopathologic data alone. In the groups of postoperative patients receiving adjuvant concurrent chemoradiotherapy, the models demonstrated higher classification performance than those using clinicopathologic data alone in cancer-specific survival (mean [SD] C index, 0.689 [0.050] vs 0.673 [0.051]; P = .02) and locoregional recurrence-free survival (mean [SD] C index, 0.693 [0.039] vs 0.678 [0.035]; P = .004). The classification performance in distant metastasis-free survival was not different (mean [SD] C index, 0.702 [0.056] vs 0.688 [0.048]; P = .09). Conclusions and relevance: A risk stratification model using comprehensive clinicopathologic and genetic data accurately differentiated the high-risk group from the low-risk group in cancer-specific survival and locoregional recurrence-free survival for postoperative patients with advanced oral cancer. This algorithm could be used through an online calculator to provide additional personalized information for postoperative management of patients with advanced oral squamous cell carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。