Longevity of insulin receptor substrate1 null mice is not associated with increased basal antioxidant protection or reduced oxidative damage

胰岛素受体底物 1 基因缺失小鼠的寿命与基础抗氧化保护增加或氧化损伤减少无关

阅读:6
作者:Melissa M Page, Dominic J Withers, Colin Selman

Abstract

Insulin receptor substrate-1 null (Irs1 (-/-)) mice are long lived and importantly they also demonstrate increased resistance to several age-related pathologies compared to wild type (WT) controls. Currently, the molecular mechanisms that underlie lifespan extension in long-lived mice are unclear although protection against oxidative damage may be important. Here, we determined both the activities of several intracellular antioxidants and levels of oxidative damage in brain, skeletal muscle, and liver of Irs1 (-/-) and WT mice at 80, 450, and 700 days of age, predicting that long-lived Irs1 (-/-) mice would be protected against oxidative damage. We measured activities of both intracellular superoxide dismutases (SOD); cytosolic (CuZnSOD) and mitochondrial (MnSOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), and reduced glutathione (GHS). Of these, only hepatic CAT was significantly altered (increased) in Irs1 (-/-) mice. In addition, the levels of protein oxidation (protein carbonyl content) and lipid peroxidation (4-hydroxynonenal) were unaltered in Irs1 (-/-) mice, although the hepatic GSH/GSSG ratio, indicating an oxidized environment, was significantly lower in long-lived Irs1 (-/-) mice. Overall, our results do not support the premise that lifespan extension in Irs1 (-/-) mice is associated with greater tissue antioxidant protection or reduced oxidative damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。