Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics

评估用于蛋白质组学的离子阱质谱仪上纳流 LC-FAIMS-MS 的动态范围和峰容量

阅读:5
作者:Jesse D Canterbury, Xianhua Yi, Michael R Hoopmann, Michael J MacCoss

Abstract

Proteomics experiments on complex mixtures have benefited greatly from the advent of fast-scanning ion trap mass spectrometers. However, the complexity and dynamic range of mixtures analyzed using shotgun proteomics is still beyond what can be sampled by data-dependent acquisition. Furthermore, the total liquid chromatography-mass spectrometry (LC-MS) peak capacity is not sufficient to resolve the precursors within these mixtures, let alone acquire tandem mass spectra on all of them. Here we describe the application of a high-field asymmetric waveform ion mobility spectrometry (FAIMS) device as an interface to an ion trap mass spectrometer. The dynamic range and peak capacity of the nanoflow LC-FAIMS-MS analysis was assessed using a complex tryptic digest of S. cerevisiae proteins. By adding this relatively simple device to the front of the mass spectrometer, we obtain an increase in peak capacity >8-fold and an increase in dynamic range of >5-fold, without increasing the length of the LC-MS analysis. Thus, the addition of FAIMS to the front of a table-top mass spectrometer can obtain the peak capacity of multidimensional protein identification technology (MudPIT) while increasing the throughput by a factor of 12.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。