The polymorphism rs35767 at IGF1 locus is associated with serum urate levels

IGF1基因座rs35767多态性与血清尿酸水平相关

阅读:4
作者:Gaia C Mannino, Anastasia Fuoco, Maria A Marini, Rosangela Spiga, Concetta Di Fatta, Elettra Mancuso, Francesco Perticone, Francesco Andreozzi, Giorgio Sesti

Abstract

Previous studies suggested that the IGF-1/IGF-1 receptor signaling pathway may contribute to regulate uric acid levels. To confirm this hypothesis, we assessed the effects of the IGF-1-raising genetic variant rs35767 on urate levels in serum and urine, and we investigated IGF-1 ability to modulate the expression of transporters involved in reabsorption and secretion of uric acid in the kidney. The study population included 2794 adult Whites. 24-hour urinary uric acid concentration was available for 229 subjects. rs35767 polymorphism was screened using TaqMan genotyping assays. HEK293 (human embryonic kidney-293) cell line was treated with IGF-1 (1, 5, 10, 50 nM) for 24-hours, and differences in the expression of urate transporters were evaluated via Western Blot and real time rtPCR. Individuals carrying the IGF-1-raising allele (rs35767 T) exhibited significantly lower levels of serum urate according to both additive and recessive models, after correction for gender, age, BMI, glucose tolerance, glomerular filtration rate, and anti-hypertensive treatment. TT genotype carriers displayed higher uricosuria than C allele carriers did, after adjusting for confounders. Exposure of HEK293 cells to IGF-1 resulted in a dose-dependent increase of uric acid transporters deputed to uric acid excretion (MRP4, NPT1 and BCRP), and reduction of GLUT9 expression, the major mediator of uric acid reabsorption, both at mRNA and protein level. We observed a significant association between the functional polymorphism rs35767 near IGF1 with serum urate concentrations and we provide a mechanistic explanation supporting a causal role for IGF-1 in the regulation of uric acid homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。