Background
Bronchopulmonary dysplasia is one of the main complications associated with extreme prematurity. Oxidative stress is suspected to be a trigger event of this lung disease, which is characterized by impaired alveolar development. Peroxides, mainly ascorbylperoxide and H2O2, are known contaminant of parenteral nutrition. We hypothesize that these oxidant molecules induce bronchopulmonary dysplasia development. The
Conclusion
Results suggest that ascorbylperoxide, generated in parenteral nutrition, is involved in the development of bronchopulmonary dysplasia, independently of the increase of the redox potential. This study underlines the importance of developing a safer formulation of parenteral nutrition.
Results
Loss of alveoli was associated with ascorbylperoxide in a dose-dependent manner, without an influence of H2O2. The dose-dependent activation of caspase-3 by ascorbylperoxide was lower in the presence of H2O2. Ascorbylperoxide induced an increase of redox potential in a dose-dependent manner, which reached a plateau in presence of H2O2. Nrf2 and NF?B were activated by H2O2 but not by ascorbylperoxide.
