Seasonal lipid dynamics of four Arctic bivalves: Implications for their physiological capacities to cope with future changes in coastal ecosystems

四种北极双壳类的季节性脂质动态:对其应对未来沿海生态系统变化的生理能力的影响

阅读:4
作者:Guillaume Bridier, Frédéric Olivier, Jacques Grall, Laurent Chauvaud, Mikael K Sejr, Réjean Tremblay

Abstract

The Arctic is exposed to unprecedented warming, at least three times higher than the global average, which induces significant melting of the cryosphere. Freshwater inputs from melting glaciers will subsequently affect coastal primary production and organic matter quality. However, due to a lack of basic knowledge on the physiology of Arctic organisms, it remains difficult to understand how these future trophic changes will threaten the long-term survival of benthic species in coastal habitats. This study aimed to gain new insights into the seasonal lipid dynamics of four dominant benthic bivalves (Astarte moerchi, Hiatella arctica, Musculus discors, and Mya truncata) collected before and after sea ice break-up in a high-Arctic fjord (Young Sound, NE Greenland). Total lipid content and fatty acid composition of digestive gland neutral lipids were analyzed to assess bivalve energy reserves while the fatty acid composition of gill polar lipids was determined as a biochemical indicator of interspecies variations in metabolic activity and temperature acclimation. Results showed a decrease in lipid reserves between May and August, suggesting that bivalves have only limited access to fresh organic matter until sea ice break-up. The lack of seasonal variation in the fatty acid composition of neutral lipids, especially essential ω3 fatty acids, indicates that no fatty acid transfer from the digestive glands to the gonads occurs between May and August, and therefore, no reproductive investment takes place during this period. Large interspecies differences in gill fatty acid composition were observed, which appear to be related to differences in species life span and metabolic strategies. Such differences in gill fatty acid composition of polar lipids, which generally influence metabolic rates and energy needs, may imply that not all benthic species will be equally sensitive to future changes in primary production and organic matter quality in Arctic coastal habitats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。