Deficits in Seizure Threshold and Other Behaviors in Adult Mice without Gross Neuroanatomic Injury after Late Gestation Transient Prenatal Hypoxia

妊娠晚期短暂性产前缺氧后未出现大体神经解剖损伤的成年小鼠癫痫发作阈值和其他行为缺陷

阅读:5
作者:Ana G Cristancho, Elyse C Gadra, Ima M Samba, Chenying Zhao, Minhui Ouyang, Sergey Magnitsky, Hao Huang, Angela N Viaene, Stewart A Anderson, Eric D Marsh

Abstract

Intrauterine hypoxia is a common cause of brain injury in children resulting in a broad spectrum of long-term neurodevelopmental sequela, including life-long disabilities that can occur even in the absence of severe neuroanatomic damage. Postnatal hypoxia-ischemia rodent models are commonly used to understand the effects of ischemia and transient hypoxia on the developing brain. Postnatal models, however, have some limitations. First, they do not test the impact of placental pathologies on outcomes from hypoxia. Second, they primarily recapitulate severe injury because they provoke substantial cell death, which is not seen in children with mild hypoxic injury. Lastly, they do not model preterm hypoxic injury. Prenatal models of hypoxia in mice may allow us to address some of these limitations to expand our understanding of developmental brain injury. The published rodent models of prenatal hypoxia employ multiple days of hypoxic exposure or complicated surgical procedures, making these models challenging to perform consistently in mice. Furthermore, large animal models suggest that transient prenatal hypoxia without ischemia is sufficient to lead to significant functional impairment to the developing brain. However, these large animal studies are resource-intensive and not readily amenable to mechanistic molecular studies. Therefore, here we characterized the effect of late gestation (embryonic day 17.5) transient prenatal hypoxia (5% inspired oxygen) on long-term anatomical and neurodevelopmental outcomes in mice. Late gestation transient prenatal hypoxia increased hypoxia-inducible factor 1 alpha protein levels (a marker of hypoxic exposure) in the fetal brain. Hypoxia exposure predisposed animals to decreased weight at postnatal day 2, which normalized by day 8. However, hypoxia did not affect gestational age at birth, litter size at birth, or pup survival. No differences in fetal brain cell death or long-term gray or white matter changes resulted from hypoxia. Animals exposed to prenatal hypoxia did have several long-term functional consequences, including sex-dichotomous changes. Hypoxia exposure was associated with a decreased seizure threshold and abnormalities in hindlimb strength and repetitive behaviors in males and females. Males exposed to hypoxia had increased anxiety-related deficits, whereas females had deficits in social interaction. Neither sex developed any motor or visual learning deficits. This study demonstrates that late gestation transient prenatal hypoxia in mice is a simple, clinically relevant paradigm for studying putative environmental and genetic modulators of the long-term effects of hypoxia on the developing brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。