Separation and Detection of Trace Fentanyl from Complex Mixtures Using Gradient Elution Moving Boundary Electrophoresis

梯度洗脱移动边界电泳法分离检测复杂混合物中的痕量芬太尼

阅读:6
作者:Shannon T Krauss, David Ross, Thomas P Forbes

Abstract

The current opioid epidemic remains an ongoing challenge, exacerbated by the extreme potency of synthetic opioids (e.g., fentanyl and fentanyl analogues), leading to an increase in adulterated heroin-related deaths. The increasing prevalence of fentanyl and fentanyl analogues in mixtures with heroin and other adulterants, excipients, and bulking agents has placed an emphasis on trace analysis methods for their detection from complex drug mixtures. Here, gradient elution moving boundary electrophoresis (GEMBE), a robust and miniaturized electrophoretic separation technique, was employed for the separation and detection of fentanyl and nine (9) fentanyl analogues from mixtures. GEMBE incorporated a short capillary (5 cm × 15 μm i.d.) for the electrophoretic separation of analytes with an opposing bulk counterflow. As the velocity of the counterflow was varied, analytes with differing electrophoretic mobilities entered the separation channel at different times and were analyzed as moving boundaries by contactless conductivity detection. The continuous injection of sample, driven by a controlled and variable pressure, both provided selectivity of the analytes and prevented contaminants or particulate within the sample from entering the separation capillary. Fentanyl was successfully separated and detected down to 2.5 μmol/L and demonstrated only 50% to 60% signal suppression in dilute binary mixtures with heroin and other common adulterants and excipients at 30:1 (compound/fentanyl) concentration ratios. In addition, GEMBE was successfully applied to a few adjudicated case samples of fentanyl-related mixtures exhibiting dyes and visible particulate. The short capillaries, contactless detection format utilized here, and continuous injection of sample allow for a small footprint platform that is easy-to-use for forensic analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。