Regulatory roles of NAMPT and NAD+ metabolism in uterine leiomyoma progression: Implications for ECM accumulation, stemness, and microenvironment

NAMPT 和 NAD+ 代谢在子宫平滑肌瘤进展中的调节作用:对 ECM 积累、干细胞和微环境的影响

阅读:5
作者:Yi-Fen Chiang, Ko-Chieh Huang, Tsui-Chin Huang, Hsin-Yuan Chen, Mohamed Ali, Ayman Al-Hendy, Pei-Shen Huang, Shih-Min Hsia

Abstract

Uterine leiomyoma (UL), commonly referred to as benign tumors, is characterized by excessive cell proliferation, extracellular matrix (ECM) accumulation, and the presence of stem cell-like properties. Nicotinamide adenine dinucleotide (NAD+) metabolism, regulated in part by nicotinamide phosphoribosyltransferase (NAMPT), plays a crucial role in these pathological processes and has emerged as a potential therapeutic target. Additionally, redox signaling pathways are integral to the pathogenesis of UL, influencing the dynamics of NAD+ metabolism. This study sought to elucidate the regulatory functions of NAMPT and NAD+ metabolism, in conjunction with redox signaling, in the progression of UL, and to explore potential therapeutic strategies targeting these pathways. Evaluation of NAMPT expression in human UL tissues revealed a positive correlation between elevated NAMPT levels and increased ECM deposition, as well as the expression of stemness markers. The use of FK866 and nicotinamide (NAM), to inhibit NAMPT significantly suppressed UL cell viability and attenuated stem cell-like characteristics. Redox signaling pathways, including those associated with DNA damage, lysosomal function homeostasis, and redox-sensitive phagophore formation, were implicated in the regulation of ECM dynamics, particularly through ECM-targeted inhibition. This study highlights the pivotal roles of NAMPT, NAD+ metabolism, and redox signaling in the pathophysiology of UL. Targeting NAMPT, particularly through the use of inhibitors FK866 and NAM, represents a promising therapeutic approach for mitigating UL progression by modulating redox and ECM dynamics. These findings offer novel insights into UL pathogenesis and establish NAMPT as a compelling target for future clinical investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。