Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans

灭活甘露糖乙醇胺磷酸转移酶 Gpi7 导致人类真菌病原体白色念珠菌对卡泊芬净产生耐药性

阅读:10
作者:Guisheng Zeng, Xiaoli Xu, Jiaxin Gao, Alessandra da Silva Dantas, Neil A R Gow, Yue Wang

Abstract

Understanding the molecular mechanisms governing antifungal resistance is crucial for identifying new cellular targets for developing new antifungal therapeutics. In this study, we performed a transposon-mediated genome-wide genetic screen in haploid Candida albicans to identify mutants resistant to caspofungin, the first member of the echinocandin class of antifungal drugs. A mutant exhibiting the highest resistance possessed a transposon insertion that inactivates GPI7, a gene encoding the mannose-ethanolamine phosphotransferase. Deleting GPI7 in diploid C. albicans caused similar caspofungin resistance. gpi7Δ/Δ cells showed significantly elevated cell wall chitin content and enhanced phosphorylation of Mkc1, a core component of the PKC-MAPK cell-wall integrity pathway. Deleting MKC1 suppressed the chitin elevation and caspofungin resistance of gpi7Δ/Δ cells, but overexpressing the dominant inactive form of RHO1, an upstream activator of PKC-MAPK signaling, did not. Transcriptome analysis uncovered 406 differentially expressed genes in gpi7Δ/Δ cells, many related to cell wall construction. Our results suggest that GPI7 deletion impairs cell wall integrity, which triggers the cell-wall salvage mechanism via the PKC-MAPK pathway independently of Rho1, resulting in the compensatory chitin synthesis to confer caspofungin resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。