Automated Feature Mining for Two-Dimensional Liquid Chromatography Applied to Polymers Enabled by Mass Remainder Analysis

通过质量剩余分析实现聚合物二维液相色谱的自动特征挖掘

阅读:6
作者:Stef R A Molenaar, Bram van de Put, Jessica S Desport, Saer Samanipour, Ron A H Peters, Bob W J Pirok

Abstract

A fast algorithm for automated feature mining of synthetic (industrial) homopolymers or perfectly alternating copolymers was developed. Comprehensive two-dimensional liquid chromatography-mass spectrometry data (LC × LC-MS) was utilized, undergoing four distinct parts within the algorithm. Initially, the data is reduced by selecting regions of interest within the data. Then, all regions of interest are clustered on the time and mass-to-charge domain to obtain isotopic distributions. Afterward, single-value clusters and background signals are removed from the data structure. In the second part of the algorithm, the isotopic distributions are employed to define the charge state of the polymeric units and the charge-state reduced masses of the units are calculated. In the third part, the mass of the repeating unit (i.e., the monomer) is automatically selected by comparing all mass differences within the data structure. Using the mass of the repeating unit, mass remainder analysis can be performed on the data. This results in groups sharing the same end-group compositions. Lastly, combining information from the clustering step in the first part and the mass remainder analysis results in the creation of compositional series, which are mapped on the chromatogram. Series with similar chromatographic behavior are separated in the mass-remainder domain, whereas series with an overlapping mass remainder are separated in the chromatographic domain. These series were extracted within a calculation time of 3 min. The false positives were then assessed within a reasonable time. The algorithm is verified with LC × LC-MS data of an industrial hexahydrophthalic anhydride-derivatized propylene glycol-terephthalic acid copolyester. Afterward, a chemical structure proposal has been made for each compositional series found within the data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。