Genome-wide characterization and expression of the TLP gene family associated with Colletotrichum gloeosporioides inoculation in Fragaria × ananassa

与草莓炭疽菌接种相关的TLP基因家族的全基因组表征和表达

阅读:9
作者:Yuchao Zhang, Lixiang Miao, Xiaofang Yang, Guihua Jiang

Background

Colletotrichum gloeosporioides, a soil-borne fungal pathogen, causes significant yield losses in many plants, including cultivated strawberry (Fragaria × ananassa, 2n = 8x = 56). Thaumatin-like proteins (TLPs) are a large and complex family of proteins that play a vital role in plant host defense and other physiological processes.

Conclusions

The data showed some differences in TLP gene expression patterns across different resistant strawberry cultivars, as well as faster TLP defense responses to pathogenic fungi in resistant cultivars. This study will aid in the characterization of TLP gene family members found in octoploid strawberries and their potential biological functions in plants' defenses against pathogenic fungi.

Methods

To enhance our understanding of the antifungal activity of F. × ananassa TLPs (FaTLP), we investigated the genome-wide identification of FaTLP gene families and their expression patterns in F. × ananassa plants upon pathogen infection. Moreover, we used RNA sequencing (RNA-seq) to detect the differences in the expression patterns of TLP genes between different resistant strawberry cultivars in response to C. gloeosporioides infection.

Results

In total, 76 TLP genes were identified from the octoploid cultivated strawberry genome with a mean length of 1,439 bp. They were distributed on 24 F. × ananassa chromosomes. The FaTLP family was then divided into ten groups (Group I-X) according to the comparative phylogenetic results. Group VIII contained the highest number of TLP family genes. qRT-PCR analysis results indicated that FaTLP40, FaTLP41, FaTLP43, FaTLP68, and FaTLP75 were upregulated following C. gloeosporioides infection in the resistant octoploid strawberry. Conclusions: The data showed some differences in TLP gene expression patterns across different resistant strawberry cultivars, as well as faster TLP defense responses to pathogenic fungi in resistant cultivars. This study will aid in the characterization of TLP gene family members found in octoploid strawberries and their potential biological functions in plants' defenses against pathogenic fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。