Atrazine Degradation Using Immobilized Triazine Hydrolase from Arthrobacter aurescens TC1 in Mesoporous Silica Nanomaterials

利用介孔二氧化硅纳米材料中金黄色节杆菌 TC1 的固定化三嗪水解酶降解阿特拉津

阅读:14
作者:Karla Diviesti, Glory A Russell-Parks, Brian G Trewyn, Richard C Holz

Abstract

Triazine hydrolase fromArthrobacter aurescens TC1 (TrzN) was successfully immobilized on mesoporous silica nanomaterials (MSNs) for the first time. For both nonfunctionalized MSNs and MSNs functionalized with Zn(II), three pore sizes were evaluated for their ability to immobilize wild-type TrzN: Mobile composition of matter no. 41 (small, 3 nm pores), mesoporous silica nanoparticle material with 10 nm pore diameter (MSN-10) (medium, 6-12 nm pores), and pore-expanded MSN-10 (large, 15-30 nm pores). Of these six TrzN:MSN biomaterials, it was shown that TrzN:MSN-10 was the most active (3.8 ± 0.4 × 10-5 U/mg) toward the hydrolysis of a 50 μM atrazine solution at 25 °C. The TrzN:MSN-10 biomaterial was then coated in chitosan (TrzN:MSN-10:Chit) as chitosan has been shown to increase stability in extreme conditions such as low/high pH, heat shock, and the presence of organic solvents. TrzN:MSN-10:Chit was shown to be a superior TrzN biomaterial to TrzN:MSN-10 as it exhibited higher activity under all storage conditions, in the presence of 20% MeOH, at low and high pH values, and at elevated temperatures up to 80 °C. Finally, the TrzN:MSN-10:Chit biomaterial was shown to be fully active in river water, which establishes it as a functional biomaterial under actual field conditions. A combination of these data indicate that the TrzN:MSN-10:Chit biomaterial exhibited the best overall catalytic profile making it a promising biocatalyst for the bioremediation of atrazine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。