Increases of iASPP-Keap1 interaction mediated by syringin enhance synaptic plasticity and rescue cognitive impairments via stabilizing Nrf2 in Alzheimer's models

紫丁香苷介导的 iASPP-Keap1 相互作用增加可增强突触可塑性,并通过稳定阿尔茨海默病模型中的 Nrf2 来挽救认知障碍

阅读:9
作者:Chun-Yan Wang, Qi Zhang, Zhe Xun, Lin Yuan, Ruonan Li, Xiang Li, Shu-Yu Tian, Na Xin, Ye Xu

Abstract

Oxidative stress is an important pathogenic manifestation of Alzheimer's disease (AD) that contributes to synaptic dysfunction, which precedes Aβ accumulation and neurofibrillary tangle formation. However, the molecular machineries that govern the decline of antioxidative defence in AD remains to be elucidated, and effective candidate for AD treatment is limited. Here, we showed that the decreases in the inhibitor of apoptosis-stimulating protein of p53 (iASPP) was associated with the vulnerability to oxidative stress in the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse brain. Treatment with an antioxidant, syringin, could ameliorate AD-related pathologic and behavioural impairments. Interestingly, syringin treatment resulted in an upregulation of iASPP and the increase in the interaction of iASPP with Kelchlike ECH-associating protein 1 (Keap1). Syringin reduced neuronal apoptosis independently of p53. We confirmed that syringin-induced enhancement of antioxidant defenses involved the stabilization of Nrf2 in overexpressing human Swedish mutant APP (APPswe) cells in vitro. Syringin-mediated Nrf2 nuclear translocation facilitated the activation of the Nrf2 downstream genes via iASPP/Nrf2 axis. Our results demonstrate that syringin-mediated increases of iASPP-Keap1 interaction restore cellular redox balance. Further study on the syringin-iASPP interactions may help in understanding the regulatory mechanism and designing novel potent modulators for AD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。