In situ and multisubstrate detection of elastase enzymatic activity external to microdialysis sampling probes using LC-ESI-MS

使用 LC-ESI-MS 对微透析采样探针外部的弹性蛋白酶活性进行原位和多底物检测

阅读:5
作者:Ying Wang, Dmitri V Zagorevski, Julie A Stenken

Abstract

Extracellular proteases play significant roles in mammalian development and disease. Enzymatic activity external to a microdialysis sampling probe can be determined by infusing judicious choices of substrates followed by collecting and measuring the products. Porcine pancreatic elastase was used as a model enzyme with two substrates possessing different cleavage sites, N-methoxysuccinyl-Ala-Ala-Pro-Val-7-amino-4-methylcoumarin (FL-substrate) and N-succinyl-Ala-Ala-Ala-p-nitroanilide (UV-substrate). These substrates were infused through the microdialysis sampling probe to a solution containing elastase. The resulting four products and the remaining two substrates were collected into the dialysate and were subsequently analyzed off-line using liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization (ESI). All analytes were identified using extracted ion chromatograms of m/z 628 (FL-substrate), m/z 452 (UV-substrate), m/z 471 (N-methoxysuccinyl-Ala-Ala-Pro-Val, FL-NTP), m/z 332 (N-succinyl-Ala-Ala-Ala, UV-NTP), m/z 176 (7-amino-4-methylcoumarin, AMC), and m/z 139 (p-nitroaniline, pNA). FL-NTP and FL-substrate exhibited 10-fold higher ion production as compared to AMC with equimolar standards. Microdialysis sampling combined with LC-ESI-MS detection allowed for in situ determination of the enzymatic activity of a protease external to the microdialysis probe when using different peptide-based substrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。