Hybrid nanocellulose material as an adsorbent to remove reactive yellow 2 dye

混合纳米纤维素材料作为吸附剂去除活性黄2染料

阅读:8
作者:Beatris L Mello, Pascal S Thue, Pâmela V da Silva, Caroline Saucier, Glaydson S Dos Reis, Fernando M Machado, Rafael de Avila Delucis, Mu Naushad, Farooq Sher, Moaaz K Seliem, Eder C Lima

Abstract

Textile dyes are frequently disposable in aqueous effluents, making it difficult to remove them from industrial effluents before their release to natural waters. This paper deals with the fabrication of cellulose-based adsorbents by reacting nanocelulose crystalline (nanocel) with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMSPEDA), forming the hybrid (silylpropyl)ethylenediamine@nanocellulose (SPEDA@nanocel), which was employed as adsorbent for the uptake of reactive yellow 2 dye (RY-2) from aqueous effluents. Characterisation of SPEDA@nanocel was carried out using FTIR, SEM-EDS, XRD, TGA, surface area, pHpzc, and hydrophobicity/hydrophilicity ratio (HI). Also, adsorption studies were thoroughly investigated. The effect of initial pH indicated that the maximum uptake of RY-2 takes place at pH 2, which is an indication of the electrostatic mechanism. The kinetic data carried out with 250 and 500 mg L-1 RY-2 with SPEDA@nanocel followed better the nonlinear fractional-like pseudo-first-order model. The t0.5 and t0.95 for the dye uptake were about 30 and 141 min, respectively. The equilibrium data from 10 to 45 °C indicated that the Liu isotherm model was the best-fitted isothermal model. The maximum sorption capacity attained was 112.3 mg g-1 at 45 °C. The thermodynamic data have shown that the equilibrium was favorable and endothermic, and the ΔH° was compatible with an electrostatic attraction between RY-2 and SPEDA@nanocel. Experiments of desorption of loaded adsorbent showed promising results for real applications since at least 5 adsorption/desorption cycles could be employed without significant changes in the recovery and with high precision.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。