Activation of Anthracene Endoperoxides in Leishmania and Impairment of Mitochondrial Functions

利什曼原虫中蒽内过氧化物的激活和线粒体功能的损害

阅读:5
作者:Gerald Geroldinger, Matthias Tonner, Werner Fudickar, Sritama De Sarkar, Aishwarya Dighal, Lianet Monzote, Katrin Staniek, Torsten Linker, Mitali Chatterjee, Lars Gille0

Abstract

Leishmaniasis is a vector-borne disease caused by protozoal Leishmania. Because of resistance development against current drugs, new antileishmanial compounds are urgently needed. Endoperoxides (EPs) are successfully used in malaria therapy, and experimental evidence of their potential against leishmaniasis exists. Anthracene endoperoxides (AcEPs) have so far been only technically used and not explored for their leishmanicidal potential. This study verified the in vitro efficiency and mechanism of AcEPs against both Leishmania promastigotes and axenic amastigotes (L. tarentolae and L. donovani) as well as their toxicity in J774 macrophages. Additionally, the kinetics and radical products of AcEPs’ reaction with iron, the formation of radicals by AcEPs in Leishmania, as well as the resulting impairment of parasite mitochondrial functions were studied. Using electron paramagnetic resonance combined with spin trapping, photometry, and fluorescence-based oximetry, AcEPs were demonstrated to (i) show antileishmanial activity in vitro at IC50 values in a low micromolar range, (ii) exhibit host cell toxicity in J774 macrophages, (iii) react rapidly with iron (II) resulting in the formation of oxygen- and carbon-centered radicals, (iv) produce carbon-centered radicals which could secondarily trigger superoxide radical formation in Leishmania, and (v) impair mitochondrial functions in Leishmania during parasite killing. Overall, the data of different AcEPs demonstrate that their structures besides the peroxo bridge strongly influence their activity and mechanism of their antileishmanial action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。