Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta

型前胶原蛋白的 proalpha1(I) 链的羧基末端前肽中的一个链内二硫键断裂,导致过度修饰但稳定的前胶原蛋白三聚体的缓慢组装和分泌,并导致轻度成骨不全症

阅读:5
作者:J M Pace, C D Kuslich, M C Willing, P H Byers

Abstract

Type I procollagen is a heterotrimer comprised of two proalpha1(I) chains and one proalpha2(I) chain. Chain recognition, association, and alignment of proalpha chains into correct registration are thought to occur through interactions between the C-terminal propeptide domains of the three chains. The C-propeptide of each chain contains a series of cysteine residues (eight in proalpha1(I) and seven in proalpha2(I)), the last four of which form intra-chain disulphide bonds. The remaining cysteine residues participate in inter-chain stabilisation. Because these residues are conserved, they are thought to be important for folding and assembly of procollagen. We identified a mutation (3897C-->G) that substituted tryptophan for the cysteine at position 1299 in proalpha1(I) (C1299W, the first cysteine that participates in intra-chain bonds) and resulted in mild osteogenesis imperfecta. The patient was born with a fractured clavicle and four rib fractures. By 18 months of age he had had no other fractures and was on the 50th centile for length and weight. The proband's mother, maternal aunt, and grandfather had the same mutation and had few fractures, white sclerae, and discoloured teeth, but their heights were within the normal range. In the patient's cells the defective chains remained as monomers for over 80 minutes (about four times normal) and were overmodified. Some secreted procollagens were also overmodified but had normal thermal stability, consistent with delayed, but normal helix formation. This intra-chain bond may stabilise the C-propeptide and promote rapid chain association. Other regions of the C-propeptide thus play more prominent roles in chain registration and triple helix nucleation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。