Hierarchical Porous Bimetallic FeMn Metal-Organic Framework Gel for Efficient Activation of Peracetic Acid in Antibiotic Degradation

多级多孔双金属 FeMn 金属有机骨架凝胶在抗生素降解中高效活化过氧乙酸

阅读:14
作者:Lu Zheng, Jiarui Fu, Baolv Hua, Yi-Nan Wu, Yifan Gu, Nianqiao Qin, Fengting Li

Abstract

Effective techniques for eliminating antibiotics from water environments are in high demand. The peracetic acid (PAA)-based advanced oxidation process has recently drawn increasing attention for its effective antibiotic degrading capability. However, current applications of PAA-based techniques are limited and tend to have unsatisfactory performance. An additional catalyst for PAA activation could provide a promising solution to improve the performance of PAA. Bulky metal-organic framework gels (MOGs) stand out as ideal catalysts for PAA activation owing to their multiple advantages, including large surface areas, high porosity, and hierarchical pore systems. Herein, a bimetallic hierarchical porous structure, i.e., FeMn13BTC, was synthesized through a facile one-pot synthesis method and employed for PAA activation in ofloxacin (OFX) degradation. The optimized FeMn MOG/PAA system exhibited efficient catalytic performance, characterized by 81.85% OFX degradation achieved within 1 h owing to the specific hierarchical structure and synergistic effect between Fe and Mn ions, which greatly exceeded the performance of the only PAA-catalyzed system. Furthermore, the FeMn MOG/PAA system maintained >80% OFX degradation in natural water. Quenching experiments, electron spin resonance spectra, and model molecular degradation revealed that the primary reactive oxygen species responsible for the catalytic effect was R-O•, especially CH3C(=O)OO•, with minor contributions of •OH and 1O2. Overall, introduction of the MOG catalyst strategy for PAA activation achieved high antibiotic degradation performance, establishing a paradigm for the design of heterogeneous hierarchical systems to broaden the scope of catalyzed water treatment applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。