A High-Throughput Targeted Proteomic Approach for Comprehensive Profiling of Methylglyoxal-Induced Perturbations of the Human Kinome

一种高通量靶向蛋白质组学方法,用于全面分析甲基乙二醛诱导的人类激酶组扰动

阅读:14
作者:Weili Miao, Yongsheng Xiao, Lei Guo, Xiaogang Jiang, Ming Huang, Yinsheng Wang

Abstract

Kinases are one of the most important families of enzymes that are involved in numerous cell signaling processes. Existing methods for studying kinase expression and activation have limited kinome coverage. Herein we established a multiple-reaction monitoring (MRM)-based targeted proteomic method that provided an unprecedented coverage (∼80%) of the human kinome. We employed this method for profiling comprehensively the alterations of the global kinome of HEK293T human embryonic kidney cells upon treatment with methylglyoxal, a glycolysis byproduct that is present at elevated levels in blood and tissues of diabetic patients and is thought to contribute to diabetic complications. Our results led to the quantification of 328 unique kinases. In particular, we found that methylglyoxal treatment gave rise to altered expression of a number of kinases in the MAPK pathway and diminished expression of several receptor tyrosine kinases, including epidermal growth factor receptor (EGFR), insulin growth factor 2 receptor (IGF2R), fibroblast growth factor receptor (FGFR), etc. Furthermore, we demonstrated that the diminished expression of EGFR occurred through a mechanism that is distinct from the reduced expression of IGF2R and FGFR1. Together, our targeted kinome profiling method offers a powerful resource for exploring kinase-mediated signaling pathways that are altered by extracellular stimuli, and the results from the present study suggest new mechanisms underlying the development of diabetic complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。