Ischemic heart injury leads to HIF1-dependent differential splicing of CaMK2γ

缺血性心脏损伤导致 HIF1 依赖的 CaMK2γ 差异剪接

阅读:9
作者:Allison Lesher Williams, Chad B Walton, Blake Pinell, Vedbar S Khadka, Brandyn Dunn, Katie Lee, M C Therese Anagaran, Abigail Avelar, Ralph V Shohet

Abstract

Ischemic heart disease is a leading cause of heart failure and hypoxia inducible factor 1 (HIF1) is a key transcription factor in the response to hypoxic injury. Our lab has developed a mouse model in which a mutated, oxygen-stable form of HIF1α (HIF-PPN) can be inducibly expressed in cardiomyocytes. We observed rapid cardiac dilation and loss of contractility in these mice due to lower expression of excitation-contraction coupling genes and reduced calcium flux. As alternative splicing plays an underappreciated role in transcriptional regulation, we used RNA sequencing to search for splicing changes in calcium-handling genes of HIF-PPN hearts and compared them to previous sequencing data from a model of myocardial infarction (MI) to select for transcripts that are modified in a pathological setting. We found overlap between genes differentially expressed in HIF-PPN and post-MI mice (54/131 genes upregulated in HIF-PPN hearts at 1 day and/or 3 days post-MI, and 45/78 downregulated), as well as changes in alternative splicing. Interestingly, calcium/calmodulin dependent protein kinase II, gamma (CAMK2G) was alternatively spliced in both settings, with variant 1 (v1) substantially decreased compared to variants 2 (v2) and 3 (v3). These findings were also replicated in vitro when cells were transfected with HIF-PPN or exposed to hypoxia. Further analysis of CAMK2γ protein abundance revealed only v1 was detectable and substantially decreased up to 7 days post-MI. Rbfox1, a splicing factor of CAMK2G, was also decreased in HIF-PPN and post-MI hearts. Subcellular fractionation showed CAMK2γ v1 was found in the nuclear and cytoplasmic fractions, and abundance decreased in both fractions post-MI. Chromatin immunoprecipitation analysis of HIF1 in post-MI hearts also demonstrated direct HIF1 binding to CAMK2G. CaMK2 is a key transducer of calcium signals in both physiological and pathological settings. The predominantly expressed isoform in the heart, CaMK2δ, has been extensively studied in cardiac injury, but the specific role of CaMK2γ is not well defined. Our data suggest that loss of CaMK2γ after MI is HIF1-dependent and may play an important role in the heart's calcium signaling and transcriptional response to hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。