Oxymatrine blocks the NLRP3 inflammasome pathway, partly downregulating the inflammatory responses of M1 macrophages differentiated from THP-1 monocytes

氧化苦参碱阻断 NLRP3 炎症小体通路,部分下调由 THP-1 单核细胞分化而来的 M1 巨噬细胞的炎症反应

阅读:6
作者:Ke Zhang, Youyang Liu, Yunlu Zhao, Qi Guo, Shengjun An, Shuhui Wu

Abstract

Many chronic inflammatory diseases, such as autoimmune inflammation, are associated with M1 macrophages, and the key to their treatment is blocking inflammation. Oxymatrine (OMT), a traditional Chinese medicine, has a marked anti-inflammatory effect. However, its anti-inflammatory target and mechanism in M1 cells remain unclear, which limits its clinical application. In this study, we investigated the anti-inflammatory effects of oxymatrine (OMT) on the M1 inflammatory response. We also determined the relationship between OMT treatment and the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) pathway with OMT treatment. To this end, we induced the differentiation of human peripheral blood monocytes (THP-1) into M1 cells. THP-1 cells were induced with a phorbol ester (phorbol-12-myristate-13-acetate (PMA)) and differentiated into naïve M0 macrophages. M0 cells were induced into M1 cells using lipopolysaccharide (LPS). The experimental groups were divided into the M0 macrophage group (NC), M1 inflammatory response group (LPS group), and M1 group treated with different concentrations of OMT (LPS + OMT-L, LPS + OMT-M, LPS + OMT-H). The cells in the OMT-treated groups were treated with OMT for 6 h, followed by LPS for 24 h, and the LPS group was treated with LPS only. The resulting supernatants and cells were collected. The secretion levels of NO were detected by the Griess method and the secretion levels of TNF-α and IL-1β in the supernatants were detected by the ELISA method. The secretion levels of these inflammatory factors were reduced in every OMT-treated group compared to the LPS group (P < 0.01), and the most significant reductions were found in the OMT-H group (P < 0.0001). By western blotting, the protein expression levels of TLR4, NF-κB, NLRP3, and Caspase-1 were all found to be downregulated in the cells of OMT-treated groups compared to the LPS group (P < 0.0001). In situ changes in NLRP3 expression were observed using immunofluorescence. The fluorescence intensity of NLRP3 in M1 cells was weaker in all OMT intervention groups than in the LPS group (P < 0.001). In conclusion, OMT has significant anti-inflammatory effects on the M1 inflammatory responses, and the TLR4/NF-κB/NLRP3 pathway was blocked proportional to the concentration of OMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。