Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles

与胶体金纳米粒子相比,固定化金纳米粒子的催化活性范围有所增加

阅读:6
作者:Célia Boukoufi, Ariane Boudier, Igor Clarot

Abstract

Gold nanoparticles (AuNPs) can be described as nanozymes, species that are able to mimic the catalytic activities of several enzymes, such as oxidase/peroxidase, reductase, or catalase. Most studies in the literature focus on the colloidal suspension of AuNPs, and it is obvious that their immobilization could open the doors to new applications thanks to their increased stability in this state. This work aimed to investigate the behavior of surfaces covered by immobilized AuNPs (iAuNPs). Citrate-stabilized AuNPs (AuNPs-cit) were synthesized and immobilized on glass slides using a simple dip coating method. The resulting iAuNPs were characterized (surface plasmon resonance, microscopy, quantification of immobilized AuNPs), and their multi-enzymatic-like activities (oxidase-, peroxidase-, and catalase-like activity) were evaluated. The comparison of their activities versus AuNPs-cit highlighted their added value, especially the preservation of their activity in some reaction media, and their ease of reuse. The huge potential of iAuNPs for heterogeneous catalysis was then applied to the degradation of two model molecules of hospital pollutants: metronidazole and methylene blue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。