Gender-affirming hormone therapy induces specific DNA methylation changes in blood

性别肯定激素疗法可诱导血液中特定的 DNA 甲基化变化

阅读:4
作者:Rebecca Shepherd, Ingrid Bretherton, Ken Pang, Toby Mansell, Anna Czajko, Bowon Kim, Amanda Vlahos, Jeffrey D Zajac, Richard Saffery, Ada Cheung #, Boris Novakovic #

Background

DNA methylation is an epigenetic mark that is influenced by underlying genetic profile, environment, and ageing. In addition to X-linked DNA methylation, sex-specific methylation patterns are widespread across autosomal chromosomes and can be present from birth or arise over time. In individuals where gender identity and sex assigned at birth are markedly incongruent, as in the case of transgender people, feminization or masculinization may be sought through gender-affirming hormone therapy (GAHT). GAHT is a cornerstone of transgender care, yet no studies to date have investigated its effect on genome-wide methylation. We profiled genome-wide DNA methylation in blood of transgender women (n = 13) and transgender men (n = 13) before and during GAHT (6 months and 12 months into feminizing or masculinizing hormone therapy).

Conclusion

We provide evidence for GAHT inducing a unique blood methylation signature in transgender people. This study advances our understanding of the complex interplay between sex hormones, sex chromosomes, and DNA methylation in the context of immunity. We highlight the need to broaden the field of 'sex-specific' immunity beyond cisgender males and cisgender females, as transgender people on GAHT exhibit a unique molecular profile.

Results

We identified several thousand differentially methylated CpG sites (DMPs) (Δβ ≥ 0.02, unadjusted p value < 0.05) and several differentially methylated regions (DMRs) in both people undergoing feminizing and masculinizing GAHT, the vast majority of which were progressive changes over time. X chromosome and sex-specific autosomal DNA methylation patterns established in early development are largely refractory to change in association with GAHT, with only 3% affected (Δβ ≥ 0.02, unadjusted p value < 0.05). The small number of sex-specific DMPs that were affected by GAHT were those that become sex-specific during the lifetime, known as sex-and-age DMPs, including DMRs in PRR4 and VMP1 genes. The GAHT-induced changes at these sex-associated probes consistently demonstrated a shift towards the methylation signature of the GAHT-naïve opposite sex, and we observed enrichment of previously reported adolescence-associated methylation changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。