A new DNA-based model for finite field arithmetic

一种新的基于DNA的有限域算法模型

阅读:7
作者:Iván Jirón, Susana Soto, Sabrina Marín, Mauricio Acosta, Ismael Soto

Abstract

A Galois field G F ( p n ) <math><mrow><mspace></mspace> <mi>G</mi> <mi>F</mi> <mrow><mo>(</mo> <mrow> <msup><mrow><mi>p</mi></mrow> <mrow><mi>n</mi></mrow> </msup> </mrow> <mo>)</mo></mrow> </mrow> </math> with p ≥ 2 <math><mrow><mspace></mspace> <mi>p</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> a prime number and n ≥ 1 <math><mrow><mi>n</mi> <mo>≥</mo> <mn>1</mn></mrow> </math> is a mathematical structure widely used in Cryptography and Error Correcting Codes Theory. In this paper, we propose a novel DNA-based model for arithmetic over G F ( p n ) <math><mrow><mspace></mspace> <mi>G</mi> <mi>F</mi> <mrow><mo>(</mo> <mrow> <msup><mrow><mi>p</mi></mrow> <mrow><mi>n</mi></mrow> </msup> </mrow> <mo>)</mo></mrow> </mrow> </math> . Our model has three main advantages over other previously described models. First, it has a flexible implementation in the laboratory that allows the realization arithmetic calculations in parallel for p ≥ 2 <math><mrow><mspace></mspace> <mi>p</mi> <mspace></mspace> <mo>≥</mo> <mn>2</mn></mrow> </math> , while the tile assembly and the sticker models are limited to p = 2 <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> . Second, the proposed model is less prone to error, because it is grounded on conventional Polymerase Chain Reaction (PCR) amplification and gel electrophoresis techniques. Hence, the problems associated to models such as tile-assembly and stickers, that arise when using more complex molecular techniques, such as hybridization and denaturation, are avoided. Third, it is simple to implement and requires 50 ng/μL per DNA double fragment used to develop the calculations, since the only feature of interest is the size of the DNA double strand fragments. The efficiency of our model has execution times of order O ( 1 ) <math><mrow><mspace></mspace> <mi>O</mi> <mrow><mo>(</mo> <mrow><mn>1</mn></mrow> <mo>)</mo></mrow> </mrow> </math> and O ( n ) <math><mrow><mspace></mspace> <mi>O</mi> <mrow><mo>(</mo> <mrow><mi>n</mi></mrow> <mo>)</mo></mrow> </mrow> </math> , for the addition and multiplication over G F ( p n ) <math><mrow><mspace></mspace> <mi>G</mi> <mi>F</mi> <mrow><mo>(</mo> <mrow> <msup><mrow><mi>p</mi></mrow> <mrow><mi>n</mi></mrow> </msup> </mrow> <mo>)</mo></mrow> </mrow> </math> , respectively. Furthermore, this paper provides one of the few experimental evidences of arithmetic calculations for molecular computing and validates the technical applicability of the proposed model to perform arithmetic operations over G F ( p n ) <math><mrow><mi>G</mi> <mi>F</mi> <mrow><mo>(</mo> <mrow> <msup><mrow><mi>p</mi></mrow> <mrow><mi>n</mi></mrow> </msup> </mrow> <mo>)</mo></mrow> </mrow> </math> .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。