Glibenclamide Prevents Hypoglycemia-Induced Fatal Cardiac Arrhythmias in Rats

格列本脲可预防大鼠低血糖引起的致命心律失常

阅读:8
作者:Candace M Reno, Justin Bayles, Allie Skinner, Simon J Fisher

Abstract

Sulfonylureas increase the incidence of severe hypoglycemia in people with type 2 diabetes and might increase the risk of sudden cardiac death. Sulfonylureas stimulate insulin secretion by closing pancreatic ATP-sensitive potassium ion (KATP) channels. To investigate the role of KATP channel modulators on cardiac arrhythmias and mortality in the setting of severe hypoglycemia, adult Sprague-Dawley rats underwent hyperinsulinemic (0.2 U/kg/min) severe hypoglycemic (10 to 15 mg/dL) clamps with continuous electrocardiography. The rats were randomized for treatment with intravenous vehicle (VEH), the sulfonylurea glibenclamide (GLIB; KATP channel blocker; 5 mg/kg/h), or diazoxide (DIAZ; KATP channel opener; 5 mg/kg/h). The results demonstrated that GLIB completely prevented first-degree heart block compared with VEH (0.18 ± 0.09/min) and DIAZ (0.2 ± 0.05/min). Second-degree heart block was significantly reduced with GLIB (0.12 ± 0.1/min) compared with VEH (0.6 ± 0.2/min) and DIAZ (6.9 ± 3/min). The incidence of third-degree heart block was completely prevented by GLIB compared with VEH (67%) and DIAZ (87.5%). Hypoglycemia-induced mortality was completely prevented by GLIB compared with VEH (60%) and DIAZ (82%). In conclusion, although GLIB increases the risk of hypoglycemia by increasing insulin secretion, these results have demonstrated a paradoxical protective role of GLIB against severe hypoglycemia-induced fatal cardiac arrhythmias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。