In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines

基质衍生化与 LC-MS/MS 相结合,可实现血浆游离甲氧基肾上腺素和儿茶酚胺的超灵敏定量分析

阅读:8
作者:Martijn van Faassen, Rainer Bischoff, Karin Eijkelenkamp, Wilhelmina H A de Jong, Claude P van der Ley, Ido P Kema

Abstract

Plasma-free metanephrines and catecholamines are essential markers in the biochemical diagnosis and follow-up of neuroendocrine tumors and inborn errors of metabolism. However, their low circulating concentrations (in the nanomolar range) and poor fragmentation characteristics hinder facile simultaneous quantification by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Here, we present a sensitive and simple matrix derivatization procedure using propionic anhydride that enables simultaneous quantification of unconjugated l-DOPA, catecholamines, and metanephrines in plasma by LC-MS/MS. Dilution of propionic anhydride 1:4 (v/v) in acetonitrile in combination with 50 μL of plasma resulted in the highest mass spectrometric response. In plasma, derivatization resulted in stable derivatives and increased sensitivity by a factor of 4-30 compared with a previous LC-MS/MS method for measuring plasma metanephrines in our laboratory. Furthermore, propionylation increased specificity, especially for 3-methoxytyramine, by preventing interference from antihypertensive medication (β-blockers). The method was validated according to international guidelines and correlated with a hydrophilic interaction LC-MS/MS method for measuring plasma metanephrines (R2 > 0.99) and high-performance liquid chromatography with an electrochemical detection method for measuring plasma catecholamines (R2 > 0.85). Reference intervals for l-DOPA, catecholamines, and metanephrines in n = 115 healthy individuals were established. Our work shows that analytes in the subnanomolar range in plasma can be derivatized in situ without any preceding sample extraction. The developed method shows improved sensitivity and selectivity over existing methods and enables simultaneous quantification of several classes of amines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。