EvoAI enables extreme compression and reconstruction of the protein sequence space

EvoAI 实现蛋白质序列空间的极端压缩和重建

阅读:7
作者:Shuyi Zhang, Ziyuan Ma, Wenjie Li, Yunhao Shen, Yunxin Xu, Gengjiang Liu, Jiamin Chang, Zeju Li, Hong Qin, Boxue Tian, Haipeng Gong, David Liu, B Thuronyi, Christopher Voigt

Abstract

Designing proteins with improved functions requires a deep understanding of how sequence and function are related, a vast space that is hard to explore. The ability to efficiently compress this space by identifying functionally important features is extremely valuable. Here, we first establish a method called EvoScan to comprehensively segment and scan the high-fitness sequence space to obtain anchor points that capture its essential features, especially in high dimensions. Our approach is compatible with any biomolecular function that can be coupled to a transcriptional output. We then develop deep learning and large language models to accurately reconstruct the space from these anchors, allowing computational prediction of novel, highly fit sequences without prior homology-derived or structural information. We apply this hybrid experimental-computational method, which we call EvoAI, to a repressor protein and find that only 82 anchors are sufficient to compress the high-fitness sequence space with a compression ratio of 1048. The extreme compressibility of the space informs both applied biomolecular design and understanding of natural evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。