Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds

富含血小板的血浆可促进稳定的多孔壳聚糖支架中培养的人类软骨细胞的嵌套和分化

阅读:7
作者:Maria Sancho-Tello, Sara Martorell, Manuel Mata Roig, Lara Milián, M A Gámiz-González, Jose Luis Gómez Ribelles, Carmen Carda

Abstract

The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chondrocytes were isolated and cultured in stabilized porous chitosan scaffolds with and without combination to activated platelet-rich plasma. Scanning electron microscopy was used for the morphological characterization of the resulting scaffolds. Cell counts were performed in hematoxylin and eosin-stained sections, and type I and II collagen expression was evaluated using immunohistochemistry. Significant increase in cell number in activated platelet-rich plasma/stabilized porous chitosan was found compared with stabilized porous chitosan scaffolds. Chondrocytes grown on stabilized porous chitosan expressed high levels of type I collagen but type II was not detectable, whereas cells grown on activated platelet rich plasma/stabilized porous chitosan scaffolds expressed high levels of type II collagen and type I was almost undetectable. In summary, activated platelet-rich plasma increases nesting and induces the differentiation of chondrocytes cultured on stabilized porous chitosan scaffolds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。