Systematic quantitative analysis of ribosome inventory during nutrient stress

营养胁迫期间核糖体库存的系统定量分析

阅读:5
作者:Heeseon An #, Alban Ordureau #, Maria Körner, Joao A Paulo, J Wade Harper

Abstract

Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。